名古屋大学大学院 生命農学研究科
植物細胞機能研究室
Lab of Plant Cell Function
Graduate School of Bioagricultural Sciences
Nagoya University
武田グループの研究
Research (Takeda Group)
PI: Shin Takeda
主にイネを用いて環境ストレス下での成長点の機能の維持機構や、ジャスモン酸応答の制御機構について調べてきました。
近年は、合成生物学的な視点を取り入れて、植物の細胞内に人工的な非膜系オルガネラを構築する研究に注力しています。将来的には、新たな機能をもつ非膜系オルガネラを創出することで、植物に様々な機能を付与できるようになるとともに、バイオ素材やバイオ創薬の可能性を大きく拡げられると考えています。
We have mainly used rice to investigate the mechanisms that maintain the function of growth points under environmental stress and the regulation of the jasmonic acid response.
In recent years, we have been focusing on research that incorporates synthetic biological perspectives and aims to construct artificial membrane-less organelles (AMOs) in plant cells. In the future, by creating AMOs with new functions, we believe that we will be able to impart various functions to plants, and greatly expand the possibilities of bio-materials and bio-drug discovery.
---
以下に研究内容や論文発表について記しています。
もし興味をお持ちになられましたら、お気軽にご連絡ください。
The following are descriptions of our research and publications
If you are interested, please feel free to contact us.
Research projects
Keywords:
天然変性タンパク質 Intrinsically disordered proteins, 非膜系オルガネラ membrane-less organelles, ジャスモン酸 Jasmonate, 環境ストレス Environmental stress, エピジェネティック制御 epigenetic regulation, ゲノムメンテナンス genome maintenance
植物細胞の中に新しい区画をつくる
Construction of Artificial Membrane-less
Organelles (AMOs)
真核細胞は膜に囲まれたオルガネラ(細胞内小器官)の他に、膜のないオルガネラ(非膜系オルガネラ)をつくります。
私達は、新たな性質や機能をもつ非膜系オルガネラをデザインし、構築するための研究を進めています。
環境ストレス下のイネの成長と生存を支える仕組み
Mechanisms underlying growth and survival of rice under stressful conditions
作成中
タンパク質の凝集性を知る
Condensates of proteins in plant cells
細胞内の非膜系オルガネラは、タンパク質や核酸などの生体高分子が集合することで形成されます。
私達は、細胞内に区画を形成できる自己集合性をもつタンパク質の解析を進めています。
ジャスモン酸 (植物ホルモン)のはたらきを制御する
Control of Jasmonate signaling
作成中
植物のゲノムメンテナンスとエピジェネティック制御機構
Genome maintenance and epigenetic regulation in plants
作成中
論文発表(主な論文)
Selected publications
原著論文 Original Papers
Koja, Y., Arakawa, T., Yoritaka, Y., Joshima, Y., Kobayashi, H., Toda K. and Takeda, S.
Basic design of artificial membrane-less organelles using condensation-prone proteins in plant cells.
Communications Biology 7: 1396 (2024).
https://doi.org/10.1038/s42003-024-07102-8
Koja, Y., Joshima Y., Yoritaka, Y., Arakawa,T., Go, H., Hakamata, N., Kaseda, H., Hattori, T. and Takeda, S.
Formation of subcellular compartments by condensation-prone protein OsJAZ2 in Oryza sativa and Nicotiana benthamiana leaf cells.
Plant Cell Reports (2023) 42(2):269-286
https://doi.org/10.1007/s00299-022-02955-x
Ogawa, D., Suzuki, Y., Yokoo, T., Katoh, E., Teruya, M., Muramatsu, M., Ma, J. F., Yoshida, Y., Isaji, S., Ogo, Y., Miyao, M., Kim, J.-M., Kojima, M., Takebayashi, Y., Sakakibara, H., Takeda, S., Okada, K., Mori, N., Seki, M. and Habu Y.
Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice.
Scientific Reports. 11: 6280. (2021).
Mahjoubi, H., Tamari, Y., Takeda, S., Bouchabké-Coussa, O., Hanin, M., Herzog, E., Schmit, A.-C., Chabouté, M.-Edith. and Ebel, C.
The wheat TdRL1 is the functional homolog of the rice RSS1 and promotes plant salt stress tolerance.
Plant Cell Reports. 37:1625-1637. (2018).
Kurotani, K., Yamanaka, K., Toda, Y., Ogawa, D., Tanaka, M., Kozawa, H., Nakamura, H., Hakata, M., Ichikawa, H., Hattori, T. and Takeda S.
Stress-tolerance profiling of a collection of extant salt-tolerant rice varieties and transgenic plants overexpressing abiotic stress tolerance genes.
Plant Cell Physiol. 56; 1867-1876. (2015).
Kurotani, K., Hayashi, K., Hatanaka, S., Toda, Y., Ogawa, D., Ichikawa, H., Ishimaru, Y., Tashita, R., Suzuki, T., Ueda, M., Hattori, T. and Takeda S.
Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice.
Plant Cell Physiol. 56; 779-789 (2015).
Hori, Y., Kurotani, K., Toda, Y., Hattori, T., and Takeda, S.
Overexpression of the JAZ factors with mutated Jas domains causes pleiotropic defects in rice spikelet development.
Plant Signaling & Behavior. 9; e970414. (2014).
Ohno, Y., Nishimura, T., Hattori, T., and Takeda, S.
BRU1 maintains configuration of the euchromatic subchromosomal domain in the nucleus of Arabidopsis.
Plant Mol. Biol. Rep. 32; 19-27. (2014).
Toda, Y., Tanaka, M., Ogawa, D., Kurata, K., Kurotani, K., Habu, Y., Ando, T., Sugimoto, K., Mitsuda, N., Katoh, E., Abe, K., Miyao, A., Hirochika, H., Hattori, T., and Takeda, S.
RICE SALT SENSITIVE 3 forms a ternary complex with JAZ and class-C bHLH factors, and regulates JA-induced gene expression and root cell elongation.
Plant Cell 25; 1709-1725. (2013).
Ogawa, D., Morita, H., Hattori, T., and Takeda, S.
Molecular characterization of the rice protein RSS1 required for meristematic activity under stressful conditions.
Plant Physiol. Biochem. 61; 54-60. (2012).
Ogawa, D., Abe, K., Miyao, A., Kojima, M., Sakakibara, H., Mizutani, M. Morita, H., Toda, Y. Hobo, T. Sato, Y., Hattori, T., Hirochika, H. and Takeda, S.
RSS1 regulates the cell cycle and maintains meristematic activity under stress conditions in rice.
Nature Communications. 2; 278. (2011).
Ohno, Y., Narangajavana, J., Yamamoto, A., Hattori, T., Kagaya,Y., Paszkowski, J., Gruissem,W., Hennig, L., and Takeda, S.
Ectopic gene expression and organogenesis in Arabidopsis mutants missing BRU1 required for genome maintenance.
Genetics. 189; 83-95. (2011).
Brini, F., Yamamoto, A., Jlaeil, L., Takeda, S., Hobo, T., Dinh, H.Q., Hattori, T., Masmoudi, K. and Hanin, M.
Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis.
Plant Cell Physiol. 52; 676-688. (2011)
総説など Reviews, etc.
Ismail, A., Takeda, S and Nick, P.
Life and death under salt stress: same players, different timing?
J. Exp. Bot. 65:2963-2979 (2014).
Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S. and Masmoudi, K.
Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms.
Plant Signaling & Behavior. 6; 1503 - 1509. (2011).
Takeda, S. and Matsuoka, M.
Genetic approaches to crop improvement: responding to environmental and population changes.
Nature Review Genetics 9, 444-457. (2008).